Sign in →

Test Code CMITO Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies


Ordering Guidance


The diagnostic workup for a mitochondrial disorder may include testing to demonstrate elevations of the lactate-to-pyruvate ratio and an elevated growth differentiation factor 15 concentration. Consider LAPYP / Lactate Pyruvate Panel, Plasma and GDF15 / Growth Differentiation Factor 15, Plasma.

 

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

 

Targeted testing for familial variants (also called site-specific or known variants testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.



Shipping Instructions


Specimen preferred to arrive within 96 hours of collection.



Specimen Required


Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with whole blood or dried blood spot testing. For instructions for testing patients who have received a bone marrow transplant, call 800-533-1710

 

Submit only 1 of the following specimens:

 

Specimen Type: Whole blood

Container/Tube: Lavender top (EDTA) or yellow top (ACD)

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 4 days

 

Specimen Type: Skin biopsy

Supplies: Fibroblast Biopsy Transport Media (T115)

Container/Tube: Sterile container with any standard cell culture media (eg, minimal essential media, RPMI 1640). The solution should be supplemented with 1% penicillin and streptomycin.

Specimen Volume: 4-mm punch

Specimen Stability Information: Refrigerated (preferred)/Ambient

Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.

 

Specimen Type: Cultured fibroblast

Container/Tube: T-25 flask

Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured fibroblast cells from a skin biopsy from another laboratory. Cultured cells from a prenatal specimen will not be accepted.

Specimen Stability Information: Ambient (preferred)/Refrigerated (<24 hours)

Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.


Forms

1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:

-Informed Consent for Genetic Testing (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

2. Molecular Genetics: Biochemical Disorders Patient Information (T527)

3. If not ordering electronically, complete, print, and send 1 of the following forms with the specimen:

-Neurology Specialty Testing Client Test Request (T732)

-Biochemical Genetics Test Request (T798)

Secondary ID

617103

Useful For

Diagnosing mitochondrial disease that results from variants in either nuclear-encoded genes or the mitochondrial genome

 

A second-tier test for patients in whom previous targeted gene variant analyses for specific mitochondrial disease-related genes were negative

 

Identifying variants known to be associated with mitochondrial disease, allowing for predictive testing of at-risk family members

Genetics Test Information

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 221 nuclear genes and amplification of the entire mitochondrial genome by long-range polymerase chain reaction: AARS2, ABAT, ABCB7, ACACA, ACAD9, ACO2, AFG3L2, AGK, AIFM1, ALDH3A2, APOPT1 (COA8), APTX, ATP5F1A, ATP5F1E, ATPAF2, AUH, BCS1L, BOLA3, C12orf65 (MTRFR), CA5A, CARS2, CHAT, CHCHD10, CLPP, COA5, COA6, COA8 (APOPT1), COASY, COQ2, COQ4, COQ6, COQ7, COQ8A, COQ8B, COQ9, COX10, COX14, COX15, COX20, COX4I1, COX4I2, COX6A1, COX6A2, COX6B1, COX7B, COX8A, CPT1C, CYC1, D2HGDH, DARS2, DGUOK, DLAT, DLD, DNA2, DNAJC19, DNM1L, EARS2, ELAC2, ETFA, ETFB, ETFDH, ETHE1, FARS2, FASTKD2, FBXL4, FDX2, FDXR, FH, FOXRED1, FXN, GAMT, GARS1, GCDH, GDAP1, GFER, GFM1, GFM2, GLYCTK, GPT2, GTPBP3, HARS2, HIBCH, HK1, HSPD1, IARS2, IBA57, IDH2, INF2, ISCU, L2HGDH, LARS2, LIAS, LRPPRC, LYRM4, LYRM7, MARS2, MFF, MGME1, MICU1, MPC1, MPV17, MRPL3, MRPL44, MRPS16, MRPS2, MRPS22, MRPS7, MSTO1, MTFMT, MTO1, MTPAP, MTRFR (C12orf65), NARS2, NBAS, NDUFA1, NDUFA10, NDUFA11, NDUFA12, NDUFA13, NDUFA2, NDUFA4, NDUFA9, NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFB3, NDUFB9, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NFU1, NR2F1, NUBPL, OGDH, OPA1, OPA3, OXCT1, PANK2, PARS2, PC, PCK2, PDHA1, PDHB, PDHX, PDP1, PDSS1, PDSS2, PET100, PNKD, PNPT1, POLG, POLG2, PTRH2, PUS1, QARS1, RARS1, RARS2, RMND1, RNASEH1, RRM2B, RTN4IP1, SACS, SARS2, SCO1, SCO2, SDHAF1, SERAC1, SFXN4, SLC19A3, SLC25A1, SLC25A12, SLC25A19, SLC25A22, SLC25A26, SLC25A3, SLC25A4, SLC25A42, SLC25A46, SLC52A2, SLC9A6, SOD1, SPG7, SUCLA2, SUCLG1, SUGCT, SURF1, TACO1, TAFAZZIN (TAZ), TARS2, TAZ (TAFAZZIN), TFAM, TIMM8A, TK2, TMEM126A, TMEM126B, TMEM70, TOP3A, TPK1, TRIT1, TRMT10C, TRMU, TRNT1, TSFM, TTC19, TUFM, TWNK, TYMP, UQCC2, UQCRB, UQCRC2, UQCRQ, VARS2, WDR45, XPNPEP3, and YARS2.

 

See Targeted Genes and Methodology Details for Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies and Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for mitochondrial disease.

Reflex Tests

Test ID Reporting Name Available Separately Always Performed
CULFB Fibroblast Culture for Genetic Test Yes No

Testing Algorithm

If skin biopsy is received, fibroblast culture will be added at an additional charge. If viable cells are not obtained, the client will be notified.

 

For more information see:

-Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm

-Neuromuscular Myopathy Testing Algorithm

Method Name

Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

Reporting Name

Combined mtDNA+Nuclear Gene Panel

Specimen Type

Varies

Specimen Minimum Volume

Whole blood: 1 mL; Skin biopsy or cultured fibroblasts: See Specimen Required

Specimen Stability Information

Specimen Type Temperature Time Special Container
Varies Varies

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Clinical Information

The mitochondrion occupies a unique position in eukaryotic biology. It is the site of energy metabolism, and it is the sole subcellular organelle that is composed of proteins derived from 2 genomes, mitochondrial and nuclear. A group of hereditary disorders due to variants in either the mitochondrial genome or nuclear mitochondrial genes have been well characterized.

 

The diagnosis of mitochondrial disease can be particularly challenging as the presentation can occur at any age, involve virtually any organ system, and be associated with widely varying severities. Due to the considerable overlap in the clinical phenotypes of various mitochondrial disorders, it is often difficult to distinguish these specific inherited disorders without genetic testing. This test utilizes massively parallel sequencing, also termed next-generation sequencing (NGS), to analyze 221 nuclear-encoded genes implicated in mitochondrial disease and to determine the exact sequence of the entire 16,569 base-pair mitochondrial genome.

 

The utility of this test is to assist in the diagnosis of mitochondrial diseases that result from variants in both nuclear encoded genes and in the mitochondrial genome. Those diseases involving nuclear genes include disorders of mitochondrial protein synthesis, coenzyme Q10 biosynthesis, respiratory chain complexes, and mitochondrial DNA (mtDNA) maintenance (ie, mtDNA depletion disorders). Disorders of the mitochondrial genome include those caused by point alterations, such as mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS), myoclonic epilepsy with ragged red fibers (MERRF), mitochondrial myopathy (MM), neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), Leigh syndrome, Leber hereditary optic neuropathy (LHON), and chronic progressive external ophthalmoplegia (CPEO). In addition to the detection of single base changes with these disorders, large deletions, such as those associated with Kearns-Sayre or Pearson syndromes, are also detected. In contrast to variants in nuclear genes, which are present in either 0, 1, or 2 copies, mitochondrial variants can be present in any fraction of the total organelles, a phenomenon known as heteroplasmy. Typically, the severity of disease presentation is a function of the degree of heteroplasmy. Individuals with a higher fraction of altered mitochondria present with more severe disease than those with lower percentages of altered alleles. The sensitivity for the detection of altered alleles in a background of wild-type (or normal) mitochondrial sequences by NGS is approximately 10%.

Reference Values

An interpretive report will be provided.

Interpretation

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(1-2) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Day(s) Performed

Monday

Report Available

28 to 42 days

Specimen Retention Time

Whole blood: 2 weeks (if available); Extracted DNA: 3 months; Cultured fibroblasts: 1 month

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

81460

81440

81465

LOINC Code Information

Test ID Test Order Name Order LOINC Value
CMITO Combined mtDNA+Nuclear Gene Panel 86206-0

 

Result ID Test Result Name Result LOINC Value
617104 Test Description 62364-5
617105 Specimen 31208-2
617106 Source 31208-2
617107 Result Summary 50397-9
617108 Result 82939-0
617109 Interpretation 69047-9
618173 Additional Results 82939-0
617110 Resources 99622-3
617111 Additional Information 48767-8
617112 Method 85069-3
617113 Genes Analyzed 48018-6
617114 Disclaimer 62364-5
617115 Released By 18771-6